3.5.15 \(\int \frac {a+b \log (c x^n)}{x (d+e x^r)^2} \, dx\) [415]

3.5.15.1 Optimal result
3.5.15.2 Mathematica [A] (warning: unable to verify)
3.5.15.3 Rubi [A] (verified)
3.5.15.4 Maple [C] (warning: unable to verify)
3.5.15.5 Fricas [B] (verification not implemented)
3.5.15.6 Sympy [A] (verification not implemented)
3.5.15.7 Maxima [F]
3.5.15.8 Giac [F]
3.5.15.9 Mupad [F(-1)]

3.5.15.1 Optimal result

Integrand size = 23, antiderivative size = 102 \[ \int \frac {a+b \log \left (c x^n\right )}{x \left (d+e x^r\right )^2} \, dx=-\frac {e x^r \left (a+b \log \left (c x^n\right )\right )}{d^2 r \left (d+e x^r\right )}-\frac {\left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {d x^{-r}}{e}\right )}{d^2 r}+\frac {b n \log \left (d+e x^r\right )}{d^2 r^2}+\frac {b n \operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right )}{d^2 r^2} \]

output
-e*x^r*(a+b*ln(c*x^n))/d^2/r/(d+e*x^r)-(a+b*ln(c*x^n))*ln(1+d/e/(x^r))/d^2 
/r+b*n*ln(d+e*x^r)/d^2/r^2+b*n*polylog(2,-d/e/(x^r))/d^2/r^2
 
3.5.15.2 Mathematica [A] (warning: unable to verify)

Time = 0.21 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.29 \[ \int \frac {a+b \log \left (c x^n\right )}{x \left (d+e x^r\right )^2} \, dx=\frac {\frac {d r \left (a+b \log \left (c x^n\right )\right )}{d+e x^r}+b n \log \left (d-d x^r\right )-a r \log \left (d-d x^r\right )+b r \left (n \log (x)-\log \left (c x^n\right )\right ) \log \left (d-d x^r\right )+b n \left (\frac {1}{2} r^2 \log ^2(x)+\left (-r \log (x)+\log \left (-\frac {e x^r}{d}\right )\right ) \log \left (d+e x^r\right )+\operatorname {PolyLog}\left (2,1+\frac {e x^r}{d}\right )\right )}{d^2 r^2} \]

input
Integrate[(a + b*Log[c*x^n])/(x*(d + e*x^r)^2),x]
 
output
((d*r*(a + b*Log[c*x^n]))/(d + e*x^r) + b*n*Log[d - d*x^r] - a*r*Log[d - d 
*x^r] + b*r*(n*Log[x] - Log[c*x^n])*Log[d - d*x^r] + b*n*((r^2*Log[x]^2)/2 
 + (-(r*Log[x]) + Log[-((e*x^r)/d)])*Log[d + e*x^r] + PolyLog[2, 1 + (e*x^ 
r)/d]))/(d^2*r^2)
 
3.5.15.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.14, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2791, 2773, 792, 2779, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \log \left (c x^n\right )}{x \left (d+e x^r\right )^2} \, dx\)

\(\Big \downarrow \) 2791

\(\displaystyle \frac {\int \frac {a+b \log \left (c x^n\right )}{x \left (e x^r+d\right )}dx}{d}-\frac {e \int \frac {x^{r-1} \left (a+b \log \left (c x^n\right )\right )}{\left (e x^r+d\right )^2}dx}{d}\)

\(\Big \downarrow \) 2773

\(\displaystyle \frac {\int \frac {a+b \log \left (c x^n\right )}{x \left (e x^r+d\right )}dx}{d}-\frac {e \left (\frac {x^r \left (a+b \log \left (c x^n\right )\right )}{d r \left (d+e x^r\right )}-\frac {b n \int \frac {x^{r-1}}{e x^r+d}dx}{d r}\right )}{d}\)

\(\Big \downarrow \) 792

\(\displaystyle \frac {\int \frac {a+b \log \left (c x^n\right )}{x \left (e x^r+d\right )}dx}{d}-\frac {e \left (\frac {x^r \left (a+b \log \left (c x^n\right )\right )}{d r \left (d+e x^r\right )}-\frac {b n \log \left (d+e x^r\right )}{d e r^2}\right )}{d}\)

\(\Big \downarrow \) 2779

\(\displaystyle \frac {\frac {b n \int \frac {\log \left (\frac {d x^{-r}}{e}+1\right )}{x}dx}{d r}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d r}}{d}-\frac {e \left (\frac {x^r \left (a+b \log \left (c x^n\right )\right )}{d r \left (d+e x^r\right )}-\frac {b n \log \left (d+e x^r\right )}{d e r^2}\right )}{d}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {\frac {b n \operatorname {PolyLog}\left (2,-\frac {d x^{-r}}{e}\right )}{d r^2}-\frac {\log \left (\frac {d x^{-r}}{e}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{d r}}{d}-\frac {e \left (\frac {x^r \left (a+b \log \left (c x^n\right )\right )}{d r \left (d+e x^r\right )}-\frac {b n \log \left (d+e x^r\right )}{d e r^2}\right )}{d}\)

input
Int[(a + b*Log[c*x^n])/(x*(d + e*x^r)^2),x]
 
output
-((e*((x^r*(a + b*Log[c*x^n]))/(d*r*(d + e*x^r)) - (b*n*Log[d + e*x^r])/(d 
*e*r^2)))/d) + (-(((a + b*Log[c*x^n])*Log[1 + d/(e*x^r)])/(d*r)) + (b*n*Po 
lyLog[2, -(d/(e*x^r))])/(d*r^2))/d
 

3.5.15.3.1 Defintions of rubi rules used

rule 792
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveConten 
t[a + b*x^n, x]]/(b*n), x] /; FreeQ[{a, b, m, n}, x] && EqQ[m, n - 1]
 

rule 2773
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)* 
(x_)^(r_.))^(q_), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^r)^(q + 1)*((a + 
 b*Log[c*x^n])/(d*f*(m + 1))), x] - Simp[b*(n/(d*(m + 1)))   Int[(f*x)^m*(d 
 + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && Eq 
Q[m + r*(q + 1) + 1, 0] && NeQ[m, -1]
 

rule 2779
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^(r 
_.))), x_Symbol] :> Simp[(-Log[1 + d/(e*x^r)])*((a + b*Log[c*x^n])^p/(d*r)) 
, x] + Simp[b*n*(p/(d*r))   Int[Log[1 + d/(e*x^r)]*((a + b*Log[c*x^n])^(p - 
 1)/x), x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0]
 

rule 2791
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^(r_.))^ 
(q_))/(x_), x_Symbol] :> Simp[1/d   Int[(d + e*x^r)^(q + 1)*((a + b*Log[c*x 
^n])^p/x), x], x] - Simp[e/d   Int[x^(r - 1)*(d + e*x^r)^q*(a + b*Log[c*x^n 
])^p, x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0] && ILtQ[q, -1 
]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 
3.5.15.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.20 (sec) , antiderivative size = 342, normalized size of antiderivative = 3.35

method result size
risch \(\frac {b \ln \left (d +e \,x^{r}\right ) n \ln \left (x \right )}{r \,d^{2}}-\frac {b \ln \left (d +e \,x^{r}\right ) \ln \left (x^{n}\right )}{r \,d^{2}}-\frac {b n \ln \left (x \right )}{r d \left (d +e \,x^{r}\right )}+\frac {b \ln \left (x^{n}\right )}{r d \left (d +e \,x^{r}\right )}-\frac {b \ln \left (x^{r}\right ) n \ln \left (x \right )}{r \,d^{2}}+\frac {b \ln \left (x^{r}\right ) \ln \left (x^{n}\right )}{r \,d^{2}}+\frac {b n \ln \left (d +e \,x^{r}\right )}{d^{2} r^{2}}-\frac {b n e \ln \left (x \right ) x^{r}}{r \,d^{2} \left (d +e \,x^{r}\right )}-\frac {b n \operatorname {dilog}\left (\frac {d +e \,x^{r}}{d}\right )}{r^{2} d^{2}}-\frac {b n \ln \left (x \right ) \ln \left (\frac {d +e \,x^{r}}{d}\right )}{r \,d^{2}}+\frac {b n \ln \left (x \right )^{2}}{2 d^{2}}+\frac {\left (-\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}-\frac {i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}}{2}+b \ln \left (c \right )+a \right ) \left (-\frac {\ln \left (d +e \,x^{r}\right )}{d^{2}}+\frac {1}{d \left (d +e \,x^{r}\right )}+\frac {\ln \left (x^{r}\right )}{d^{2}}\right )}{r}\) \(342\)

input
int((a+b*ln(c*x^n))/x/(d+e*x^r)^2,x,method=_RETURNVERBOSE)
 
output
b/r/d^2*ln(d+e*x^r)*n*ln(x)-b/r/d^2*ln(d+e*x^r)*ln(x^n)-b/r/d/(d+e*x^r)*n* 
ln(x)+b/r/d/(d+e*x^r)*ln(x^n)-b/r/d^2*ln(x^r)*n*ln(x)+b/r/d^2*ln(x^r)*ln(x 
^n)+b*n*ln(d+e*x^r)/d^2/r^2-b/r*n*e/d^2*ln(x)*x^r/(d+e*x^r)-b/r^2*n/d^2*di 
log((d+e*x^r)/d)-b/r*n/d^2*ln(x)*ln((d+e*x^r)/d)+1/2*b*n/d^2*ln(x)^2+(-1/2 
*I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+1/2*I*b*Pi*csgn(I*c)*csgn(I*c* 
x^n)^2+1/2*I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-1/2*I*b*Pi*csgn(I*c*x^n)^3+b 
*ln(c)+a)/r*(-1/d^2*ln(d+e*x^r)+1/d/(d+e*x^r)+1/d^2*ln(x^r))
 
3.5.15.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 214 vs. \(2 (101) = 202\).

Time = 0.28 (sec) , antiderivative size = 214, normalized size of antiderivative = 2.10 \[ \int \frac {a+b \log \left (c x^n\right )}{x \left (d+e x^r\right )^2} \, dx=\frac {b d n r^{2} \log \left (x\right )^{2} + 2 \, b d r \log \left (c\right ) + 2 \, a d r + {\left (b e n r^{2} \log \left (x\right )^{2} + 2 \, {\left (b e r^{2} \log \left (c\right ) - b e n r + a e r^{2}\right )} \log \left (x\right )\right )} x^{r} - 2 \, {\left (b e n x^{r} + b d n\right )} {\rm Li}_2\left (-\frac {e x^{r} + d}{d} + 1\right ) - 2 \, {\left (b d r \log \left (c\right ) - b d n + a d r + {\left (b e r \log \left (c\right ) - b e n + a e r\right )} x^{r}\right )} \log \left (e x^{r} + d\right ) + 2 \, {\left (b d r^{2} \log \left (c\right ) + a d r^{2}\right )} \log \left (x\right ) - 2 \, {\left (b e n r x^{r} \log \left (x\right ) + b d n r \log \left (x\right )\right )} \log \left (\frac {e x^{r} + d}{d}\right )}{2 \, {\left (d^{2} e r^{2} x^{r} + d^{3} r^{2}\right )}} \]

input
integrate((a+b*log(c*x^n))/x/(d+e*x^r)^2,x, algorithm="fricas")
 
output
1/2*(b*d*n*r^2*log(x)^2 + 2*b*d*r*log(c) + 2*a*d*r + (b*e*n*r^2*log(x)^2 + 
 2*(b*e*r^2*log(c) - b*e*n*r + a*e*r^2)*log(x))*x^r - 2*(b*e*n*x^r + b*d*n 
)*dilog(-(e*x^r + d)/d + 1) - 2*(b*d*r*log(c) - b*d*n + a*d*r + (b*e*r*log 
(c) - b*e*n + a*e*r)*x^r)*log(e*x^r + d) + 2*(b*d*r^2*log(c) + a*d*r^2)*lo 
g(x) - 2*(b*e*n*r*x^r*log(x) + b*d*n*r*log(x))*log((e*x^r + d)/d))/(d^2*e* 
r^2*x^r + d^3*r^2)
 
3.5.15.6 Sympy [A] (verification not implemented)

Time = 144.22 (sec) , antiderivative size = 360, normalized size of antiderivative = 3.53 \[ \int \frac {a+b \log \left (c x^n\right )}{x \left (d+e x^r\right )^2} \, dx=- \frac {a e \left (\begin {cases} \frac {x^{r}}{d^{2}} & \text {for}\: e = 0 \\- \frac {1}{d e + e^{2} x^{r}} & \text {otherwise} \end {cases}\right )}{d r} - \frac {a e \left (\begin {cases} \frac {x^{r}}{d} & \text {for}\: e = 0 \\\frac {\log {\left (d + e x^{r} \right )}}{e} & \text {otherwise} \end {cases}\right )}{d^{2} r} + \frac {a \log {\left (x^{r} \right )}}{d^{2} r} + \frac {b e n \left (\begin {cases} \frac {\begin {cases} \frac {x^{r}}{r} & \text {for}\: r \neq 0 \\\log {\left (x \right )} & \text {otherwise} \end {cases}}{d^{2}} & \text {for}\: e = 0 \\- \begin {cases} \frac {\log {\left (x \right )}}{e^{2}} & \text {for}\: d = 0 \wedge r = 0 \\- \frac {x^{- r}}{e^{2} r} & \text {for}\: d = 0 \\\frac {\log {\left (x \right )}}{d e + e^{2}} & \text {for}\: r = 0 \\\frac {\log {\left (x \right )}}{d e} - \frac {\log {\left (\frac {d}{e} + x^{r} \right )}}{d e r} & \text {otherwise} \end {cases} & \text {otherwise} \end {cases}\right )}{d r} - \frac {b e \left (\begin {cases} \frac {x^{r}}{d^{2}} & \text {for}\: e = 0 \\- \frac {1}{d e + e^{2} x^{r}} & \text {otherwise} \end {cases}\right ) \log {\left (c x^{n} \right )}}{d r} + \frac {b e n \left (\begin {cases} \frac {\begin {cases} \frac {x^{r}}{r} & \text {for}\: r \neq 0 \\\log {\left (x \right )} & \text {otherwise} \end {cases}}{d} & \text {for}\: e = 0 \\\frac {\begin {cases} - \frac {\operatorname {Li}_{2}\left (\frac {e x^{r} e^{i \pi }}{d}\right )}{r} & \text {for}\: \frac {1}{\left |{x}\right |} < 1 \wedge \left |{x}\right | < 1 \\\log {\left (d \right )} \log {\left (x \right )} - \frac {\operatorname {Li}_{2}\left (\frac {e x^{r} e^{i \pi }}{d}\right )}{r} & \text {for}\: \left |{x}\right | < 1 \\- \log {\left (d \right )} \log {\left (\frac {1}{x} \right )} - \frac {\operatorname {Li}_{2}\left (\frac {e x^{r} e^{i \pi }}{d}\right )}{r} & \text {for}\: \frac {1}{\left |{x}\right |} < 1 \\- {G_{2, 2}^{2, 0}\left (\begin {matrix} & 1, 1 \\0, 0 & \end {matrix} \middle | {x} \right )} \log {\left (d \right )} + {G_{2, 2}^{0, 2}\left (\begin {matrix} 1, 1 & \\ & 0, 0 \end {matrix} \middle | {x} \right )} \log {\left (d \right )} - \frac {\operatorname {Li}_{2}\left (\frac {e x^{r} e^{i \pi }}{d}\right )}{r} & \text {otherwise} \end {cases}}{e} & \text {otherwise} \end {cases}\right )}{d^{2} r} - \frac {b e \left (\begin {cases} \frac {x^{r}}{d} & \text {for}\: e = 0 \\\frac {\log {\left (d + e x^{r} \right )}}{e} & \text {otherwise} \end {cases}\right ) \log {\left (c x^{n} \right )}}{d^{2} r} + \frac {b n \left (\begin {cases} 0 & \text {for}\: r = 0 \\- \frac {\log {\left (x^{r} \right )}^{2}}{2 r} & \text {otherwise} \end {cases}\right )}{d^{2} r} + \frac {b \log {\left (x^{r} \right )} \log {\left (c x^{n} \right )}}{d^{2} r} \]

input
integrate((a+b*ln(c*x**n))/x/(d+e*x**r)**2,x)
 
output
-a*e*Piecewise((x**r/d**2, Eq(e, 0)), (-1/(d*e + e**2*x**r), True))/(d*r) 
- a*e*Piecewise((x**r/d, Eq(e, 0)), (log(d + e*x**r)/e, True))/(d**2*r) + 
a*log(x**r)/(d**2*r) + b*e*n*Piecewise((Piecewise((x**r/r, Ne(r, 0)), (log 
(x), True))/d**2, Eq(e, 0)), (-Piecewise((log(x)/e**2, Eq(d, 0) & Eq(r, 0) 
), (-1/(e**2*r*x**r), Eq(d, 0)), (log(x)/(d*e + e**2), Eq(r, 0)), (log(x)/ 
(d*e) - log(d/e + x**r)/(d*e*r), True)), True))/(d*r) - b*e*Piecewise((x** 
r/d**2, Eq(e, 0)), (-1/(d*e + e**2*x**r), True))*log(c*x**n)/(d*r) + b*e*n 
*Piecewise((Piecewise((x**r/r, Ne(r, 0)), (log(x), True))/d, Eq(e, 0)), (P 
iecewise((-polylog(2, e*x**r*exp_polar(I*pi)/d)/r, (Abs(x) < 1) & (1/Abs(x 
) < 1)), (log(d)*log(x) - polylog(2, e*x**r*exp_polar(I*pi)/d)/r, Abs(x) < 
 1), (-log(d)*log(1/x) - polylog(2, e*x**r*exp_polar(I*pi)/d)/r, 1/Abs(x) 
< 1), (-meijerg(((), (1, 1)), ((0, 0), ()), x)*log(d) + meijerg(((1, 1), ( 
)), ((), (0, 0)), x)*log(d) - polylog(2, e*x**r*exp_polar(I*pi)/d)/r, True 
))/e, True))/(d**2*r) - b*e*Piecewise((x**r/d, Eq(e, 0)), (log(d + e*x**r) 
/e, True))*log(c*x**n)/(d**2*r) + b*n*Piecewise((0, Eq(r, 0)), (-log(x**r) 
**2/(2*r), True))/(d**2*r) + b*log(x**r)*log(c*x**n)/(d**2*r)
 
3.5.15.7 Maxima [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x \left (d+e x^r\right )^2} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x^{r} + d\right )}^{2} x} \,d x } \]

input
integrate((a+b*log(c*x^n))/x/(d+e*x^r)^2,x, algorithm="maxima")
 
output
a*(1/(d*e*r*x^r + d^2*r) + log(x)/d^2 - log((e*x^r + d)/e)/(d^2*r)) + b*in 
tegrate((log(c) + log(x^n))/(e^2*x*x^(2*r) + 2*d*e*x*x^r + d^2*x), x)
 
3.5.15.8 Giac [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x \left (d+e x^r\right )^2} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x^{r} + d\right )}^{2} x} \,d x } \]

input
integrate((a+b*log(c*x^n))/x/(d+e*x^r)^2,x, algorithm="giac")
 
output
integrate((b*log(c*x^n) + a)/((e*x^r + d)^2*x), x)
 
3.5.15.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c x^n\right )}{x \left (d+e x^r\right )^2} \, dx=\int \frac {a+b\,\ln \left (c\,x^n\right )}{x\,{\left (d+e\,x^r\right )}^2} \,d x \]

input
int((a + b*log(c*x^n))/(x*(d + e*x^r)^2),x)
 
output
int((a + b*log(c*x^n))/(x*(d + e*x^r)^2), x)